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Non-parallel shear flows of an inviscid, incompressible, density-stratified fluid are 
considered. The stability is studied in terms of the possibility of complete mixing 
within a horizontal layer of given thickness. It is assumed that the energy interchange 
between the mixed region and the external fluid can be neglected. It is also assumed 
that the required turbulent energy is greater than the energy needed to invert the 
region to be mixed. The term ‘stable’ as used here means that the kinetic energy 
released by making the velocity constant over the layer thickness is not sufficient to 
provide the required turbulent energy for that layer thickness. 

If each horizontal fluid plane has a translational velocity of the same magnitude 
and shear is produced by rotation of the velocity vector with increasing height, then 
‘ stability ’ increases strongly with increasing layer thickness. 

1. Introduction 
Miles (1 961) established a sufficient condition for the dynamic stability of a hetero- 

geneous parallel shear flow subjected to infinitesimal disturbances. This condition is 
that the local Richardson number J is everywhere greater than and U’(z) + 0. 
( J  = N 2 / W 2 ,  where N is the Brunt-Vaisala frequency and 77’ is the vertical gradient 
of the horizontal velocity.) This confirmed an earlier conjecture by Taylor (1931). 
Howard (1 961) presented a simplified proof requiring fewer assumptions. References 
to other work in this field can be found in Miles (1961) and Yih (1965, 1974). 

Here we treat, by a less precise method, a non-parallel shear flow with constant 
local density gradient. The shear is produced by maintaining a fixed resultant hori- 
zontal velocity, but rotating the direction of the resultant velocity vector uniformly 
with increasing height. 

Instead of specifying small disturbances, we proceed to the ultimate result of in- 
stability and ask if a horizontal layer of fluid of given thickness can release sufficient 
energy from its non-uniform velocity profile to provide the stipulated minimum of 
turbulent energy. We assume that during the transition to turbulence there is no 
significant energy exchange between the mixing region and the external fluid. The 
minimum energy required for turbulence is taken as that required to overturn or 
invert the layer (which initially has heavier fluid particles at  the bottom). The mecha- 
nism of twbulence is of course much more complicated than this would suggest. 
Turbulence involves motions in three dimensions and a flow of energy from larger- 
scale to smaller-scale motions. Nevertheless the least energy that such motion could 
possess (immediately after transition) can plausibly be set as that required to invert 
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the layer, if completJe mixing is to be attained. Although computed from a potential- 
energy requirement this energy would appear in the mixed region as both kinetic and 
potential turbulent energy. 

The assumption of zero energy exchange between the mixing region and the external 
fluid is not as arbitrary as one might at first suppose. Above and below the turbulent 
mixed region unsteady motions appear, but decrease rapidly with increasing vertical 
distance. These non-turbulent regions resemble the turbulent region in two important 
respects. Energy is liberated if the velocity gradients are reduced and energy (potential 
and kinetic) is required to maintain the unsteady motions. Beyond the regions of 
large unsteady motion are regions of small disturbance across whose boundaries no 
significant amount of energy can flow (since pressure and velocity perturbations are 
small). Thus the present analysis might be said to deal with layers of large disturbance 
(containing turbulent and non-turbulent flow) whose characteristics are approximated 
by complete mixing. 

In considering the assumption of zero energy exchange it should also be noted that 
the sufficient condition for stability of a fluid subjected to small disturbances does not 
necessarily depend on the extent of the fluid. The condition applies to a thin horizontal 
layer of fluid bounded by solid walls, and precisely the same condition applies to this 
thin layer when it is embedded in an infinite expanse of stable fluid. This suggests the 
unimportance of energy exchange between the local unstable region and the external 
fluid. 

2. Development 
The ~t: and y axes are horizontal and the z axis (or kz axis) is vertical (see figure 1) .  

The density of the incompressible fluid is taken as p(z) = po +p’z with p’ constant. 
(Here the subscript 0 denotes the value a t  z = 0 and the prime indicates differentiation 
with respect to z.) The magnitude of the translational velocity U of each horizontal 
fluid plane is assumed constant, but the direction varies with height, such that 
u = U sin ( k z )  and w = U cos ( k z ) ,  u and ZI being the x and y components of U. Then 
U ‘ ~ + Z I ’ ~  = U2k2 and J = N 2 / U 2 k 2 ,  where N 2  = -gp‘/p,. 

Initially the mass, 5 momentum, y momentum and kinetic energy, each per unit 
of horizontal area, are 

y momentum = 1; pvdz,  k.e. = - pUZdz, :I: J 
and the potential energy (which contains an arbitrary reference level) is set equal to 
zero. 

After mixing, these quantities are 

mass = ( p o + A p )  h, 

x momentum = (po + Ap)  (uo + Au) h, 

y momentum = (po + Ap)  (vo + Aw) h, 

k.e. = g(p0 + A p )  [(uo + A U ) ~  + (vo + A V ) ~ ]  h 
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FIGURE 1. Critical Richardson number for ‘stability’ vs. 

non-dimensional layer thickness. 

and the turbulent energy is expressed as the increase in potential energy produced by 
inverting the layer multiplied by 1 + K ,  where K is a positive constant: 

t.e. = ( 1 + K ) g  ( p o + p ’ z ) [ ( h - z ) - z ] d z  = -Qgp’h3(1 + K ) .  (3) sa 
(The buoyant force does no net work in this exchange of particles.) 

mentum and y momentum and become 
The quantities Ap, Au and Av are determined by the conservation of mass, x mo- 

A p  = 1 2 P  ‘h, 

AU = U [  1 - cos (kh) ] /kh ,  

Av = U[sin (kh)  - kh]/kh. (6) 

The ‘stability’ boundary comes from equating the total energies before and after 
mixing, which gives 

+ ( P O +  A p )  [(uo + A u ) ~ +  (vo + A v ) ~ ]  h -  $U2 J ’” (po +p’z )  dz- &gp’h3(1 + K )  = 0. ( 7 )  
0 

In the first two terms (the kinetic-energy terms) p‘h can be neglected in comparison 
with po. This is a Boussinesq approximation, the effect of density variation on inertia 
terms being much less than its effect on restoring forces. Then Ap in the first term in 
(7) and p’ in the second term can be set equal to zero. Au and Av can be replaced from 
(5) and (6), and noting that uo = 0, vo = U and - gp’/po U2k2 = J we get 

J,, = 3 [ w  + 2 cos ~%h - 21/k4h4(1+ rr). 18) 

Here Jcr is the critical value of the Richardson number corresponding to the 
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‘stability’ boundary. This relation is plotted in figure 1 .  Above the boundary the fluid 
is ‘stable’ (i.e. cannot mix completely). Below the boundary the fluid is ‘unstable’ 
(i.e. can release enough energy from its velocity profile to overturn the layer and mix 
completely). 

3. Discussion and conclusions 

the cosine term and gives 
When h, the layer thickness, approaches zero (8) can be evaluated by expanding 

Jcr = [4(1 +K)]-’, (9)  

(10) 

where K is always greater than zero. When hk approaches co, (8) approaches 

Jcr = 3[k2h2( I + K)]-l. 

This indicates that a layer of large thickness (in terms of the vertical period 2n/k)  
does not readily mix completely and uniformly over its entire thickness. 

Equation (10) also applies (precisely) when kh is an even multiple of n. If kh = 2n, 
JCr = 3[47r2( 1 + K)]-l and, even if K is assigned the minimum value of zero, J,, = 0.076, 
which is considerably less than 0.25, the value for parallel shear subjected to small 
perturbations. This means that a layer of thickness 2 z / k  cannot mix completely and 
uniformly for a Richardson number greater than 0.076. 

In  weighing up such results one must keep in mind the initial assumptions concerning 
the absence of significant energy exchange with the external fluid during transition 
and the prescription of a minimum turbulent energy consistent with complete mixing. 
Also one should consider that K ,  here assumed constant, might perhaps vary with 
the layer thickness. 
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